On Inner Product on Conformal

نویسنده

  • Alexander A. Kirillov
چکیده

This is the second part of the paper (the rst part is published in Journal of AMS 9 1135. In the rst part, we deened for every modular tensor category (MTC) inner products on the spaces of morphisms and proved that the inner product on the space Hom(L X i X i ; U) is modular invariant. Also, we have shown that in the case of the MTC arising from the representations of the quantum group U q sl n at roots of unity and U being a symmetric power of the fundamental representation , this inner product coincides with so-called Macdonald's inner product on symmetric polynomials. In this paper, we apply the same construction to the MTC coming from the integrable representations of aane Lie algebras. In this case our construction immediately gives a hermitian form on the spaces of conformal blocks, and this form is modular invariant (Warning: we cannot prove that it is positive dee-nite). We show that this form can be rewritten in terms of asymptotics of KZ equations, and calculate it for sl 2 , in which case the formula is a natural aane analogue of Macdonald's inner product identities. We also formulate as a conjecture similar formula for sl n .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of replacing cochlea contour with inner ear contour on cochlea dose-volume calculations in conventional 2 dimensional and conformal 3 dimensional radiotherapy of brain

Introduction: Sensorineural hearing loss (SNHL) is one of the possible complications of radiotherapy treatment of brain tumors. The auditory system of patients with brain tumors often is placed inside of radiation field and receives a significant amount of radiation dose resulting in hearing loss. The purpose of this study was to compare contouring and delivery dose to cochlea...

متن کامل

A Comparative Study of Fuzzy Inner Product Spaces

In the present paper, we investigate a connection between two fuzzy inner product one of which arises from Felbin's fuzzy norm and the other is based on Bag and Samanta's fuzzy norm. Also we show that, considering a fuzzy inner product space, how one can construct another kind of fuzzy inner product on this space.

متن کامل

NORM AND INNER PRODUCT ON FUZZY LINEAR SPACES OVER FUZZY FIELDS

In this paper, we introduce the concepts of norm and inner prod- uct on fuzzy linear spaces over fuzzy elds and discuss some fundamental properties.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998